base-4.13.0.0: Basic libraries
Copyright(c) The University of Glasgow 1992-2002
Licensesee libraries/base/LICENSE
Maintainercvs-ghc@haskell.org
Stabilityinternal
Portabilitynon-portable (GHC extensions)
Safe HaskellUnsafe
LanguageHaskell2010

GHC.Base

Description

Basic data types and classes.

Synopsis

Documentation

augment :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a] -> [a] #

A list producer that can be fused with foldr. This function is merely

   augment g xs = g (:) xs

but GHC's simplifier will transform an expression of the form foldr k z (augment g xs), which may arise after inlining, to g k (foldr k z xs), which avoids producing an intermediate list.

(++) :: [a] -> [a] -> [a] infixr 5 #

Append two lists, i.e.,

[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a] #

A list producer that can be fused with foldr. This function is merely

   build g = g (:) []

but GHC's simplifier will transform an expression of the form foldr k z (build g), which may arise after inlining, to g k z, which avoids producing an intermediate list.

foldr :: (a -> b -> b) -> b -> [a] -> b #

foldr, applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

eqString :: String -> String -> Bool #

This String equality predicate is used when desugaring pattern-matches against strings.

bindIO :: IO a -> (a -> IO b) -> IO b #

returnIO :: a -> IO a #

otherwise :: Bool #

otherwise is defined as the value True. It helps to make guards more readable. eg.

 f x | x < 0     = ...
     | otherwise = ...

assert :: Bool -> a -> a #

If the first argument evaluates to True, then the result is the second argument. Otherwise an AssertionFailed exception is raised, containing a String with the source file and line number of the call to assert.

Assertions can normally be turned on or off with a compiler flag (for GHC, assertions are normally on unless optimisation is turned on with -O or the -fignore-asserts option is given). When assertions are turned off, the first argument to assert is ignored, and the second argument is returned as the result.

thenIO :: IO a -> IO b -> IO b #

breakpoint :: a -> a #

breakpointCond :: Bool -> a -> a #

map :: (a -> b) -> [a] -> [b] #

O(n). map f xs is the list obtained by applying f to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
map f [x1, x2, ...] == [f x1, f x2, ...]
>>> map (+1) [1, 2, 3]

($) :: forall r a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

Note that ($) is levity-polymorphic in its result type, so that foo $ True where foo :: Bool -> Int# is well-typed.

join :: Monad m => m (m a) -> m a #

The join function is the conventional monad join operator. It is used to remove one level of monadic structure, projecting its bound argument into the outer level.

Examples

Expand

A common use of join is to run an IO computation returned from an STM transaction, since STM transactions can't perform IO directly. Recall that

atomically :: STM a -> IO a

is used to run STM transactions atomically. So, by specializing the types of atomically and join to

atomically :: STM (IO b) -> IO (IO b)
join       :: IO (IO b)  -> IO b

we can compose them as

join . atomically :: STM (IO b) -> IO b

to run an STM transaction and the IO action it returns.

class Applicative m => Monad m where #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following:

Left identity
return a >>= k = k a
Right identity
m >>= return = m
Associativity
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: forall a b. m a -> (a -> m b) -> m b infixl 1 #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: forall a b. m a -> m b -> m b infixl 1 #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m a #

Inject a value into the monadic type.

Instances

Instances details
Monad [] #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] #

(>>) :: [a] -> [b] -> [b] #

return :: a -> [a] #

Monad Maybe #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

Monad IO #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

Monad Par1 #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Par1 a -> (a -> Par1 b) -> Par1 b #

(>>) :: Par1 a -> Par1 b -> Par1 b #

return :: a -> Par1 a #

Monad NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

Monad NoIO #

Since: base-4.4.0.0

Instance details

Defined in GHC.GHCi

Methods

(>>=) :: NoIO a -> (a -> NoIO b) -> NoIO b #

(>>) :: NoIO a -> NoIO b -> NoIO b #

return :: a -> NoIO a #

Monad ReadP #

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: ReadP a -> (a -> ReadP b) -> ReadP b #

(>>) :: ReadP a -> ReadP b -> ReadP b #

return :: a -> ReadP a #

Monad ReadPrec #

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

(>>=) :: ReadPrec a -> (a -> ReadPrec b) -> ReadPrec b #

(>>) :: ReadPrec a -> ReadPrec b -> ReadPrec b #

return :: a -> ReadPrec a #

Monad Down #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(>>=) :: Down a -> (a -> Down b) -> Down b #

(>>) :: Down a -> Down b -> Down b #

return :: a -> Down a #

Monad Product #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

Monad Sum #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

Monad Dual #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

Monad Last #

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

Monad First #

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

Monad STM #

Since: base-4.3.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

(>>=) :: STM a -> (a -> STM b) -> STM b #

(>>) :: STM a -> STM b -> STM b #

return :: a -> STM a #

Monad Identity #

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b #

(>>) :: Identity a -> Identity b -> Identity b #

return :: a -> Identity a #

Monad Option #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: Option a -> (a -> Option b) -> Option b #

(>>) :: Option a -> Option b -> Option b #

return :: a -> Option a #

Monad Last #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

Monad First #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

Monad Max #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: Max a -> (a -> Max b) -> Max b #

(>>) :: Max a -> Max b -> Max b #

return :: a -> Max a #

Monad Min #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: Min a -> (a -> Min b) -> Min b #

(>>) :: Min a -> Min b -> Min b #

return :: a -> Min a #

Monad Complex #

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

(>>=) :: Complex a -> (a -> Complex b) -> Complex b #

(>>) :: Complex a -> Complex b -> Complex b #

return :: a -> Complex a #

Monad (Either e) #

Since: base-4.4.0.0

Instance details

Defined in Data.Either

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

Monad (U1 :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b #

(>>) :: U1 a -> U1 b -> U1 b #

return :: a -> U1 a #

Monoid a => Monad ((,) a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, a0) -> (a0 -> (a, b)) -> (a, b) #

(>>) :: (a, a0) -> (a, b) -> (a, b) #

return :: a0 -> (a, a0) #

Monad (ST s) #

Since: base-2.1

Instance details

Defined in GHC.ST

Methods

(>>=) :: ST s a -> (a -> ST s b) -> ST s b #

(>>) :: ST s a -> ST s b -> ST s b #

return :: a -> ST s a #

Monad (Proxy :: Type -> Type) #

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b #

(>>) :: Proxy a -> Proxy b -> Proxy b #

return :: a -> Proxy a #

ArrowApply a => Monad (ArrowMonad a) #

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

(>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b #

(>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

return :: a0 -> ArrowMonad a a0 #

Monad m => Monad (WrappedMonad m) #

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

return :: a -> WrappedMonad m a #

Monad (ST s) #

Since: base-2.1

Instance details

Defined in Control.Monad.ST.Lazy.Imp

Methods

(>>=) :: ST s a -> (a -> ST s b) -> ST s b #

(>>) :: ST s a -> ST s b -> ST s b #

return :: a -> ST s a #

Monad f => Monad (Rec1 f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

return :: a -> Rec1 f a #

Monad f => Monad (Alt f) #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b #

(>>) :: Alt f a -> Alt f b -> Alt f b #

return :: a -> Alt f a #

Monad f => Monad (Ap f) #

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b #

(>>) :: Ap f a -> Ap f b -> Ap f b #

return :: a -> Ap f a #

Monad ((->) r :: Type -> Type) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: (r -> a) -> (a -> r -> b) -> r -> b #

(>>) :: (r -> a) -> (r -> b) -> r -> b #

return :: a -> r -> a #

(Monad f, Monad g) => Monad (f :*: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

return :: a -> (f :*: g) a #

(Monad f, Monad g) => Monad (Product f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

(>>=) :: Product f g a -> (a -> Product f g b) -> Product f g b #

(>>) :: Product f g a -> Product f g b -> Product f g b #

return :: a -> Product f g a #

Monad f => Monad (M1 i c f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

return :: a -> M1 i c f a #

class Functor f where #

A type f is a Functor if it provides a function fmap which, given any types a and b lets you apply any function from (a -> b) to turn an f a into an f b, preserving the structure of f. Furthermore f needs to adhere to the following:

Identity
fmap id == id
Composition
fmap (f . g) == fmap f . fmap g

Note, that the second law follows from the free theorem of the type fmap and the first law, so you need only check that the former condition holds.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b #

(<$) :: a -> f b -> f a infixl 4 #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Instances

Instances details
Functor [] #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> [a] -> [b] #

(<$) :: a -> [b] -> [a] #

Functor Maybe #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Functor IO #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Functor Par1 #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b #

(<$) :: a -> Par1 b -> Par1 a #

Functor NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Functor NoIO #

Since: base-4.8.0.0

Instance details

Defined in GHC.GHCi

Methods

fmap :: (a -> b) -> NoIO a -> NoIO b #

(<$) :: a -> NoIO b -> NoIO a #

Functor ReadP #

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b #

(<$) :: a -> ReadP b -> ReadP a #

Functor ReadPrec #

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

fmap :: (a -> b) -> ReadPrec a -> ReadPrec b #

(<$) :: a -> ReadPrec b -> ReadPrec a #

Functor Down #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

fmap :: (a -> b) -> Down a -> Down b #

(<$) :: a -> Down b -> Down a #

Functor Product #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Functor Sum #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Functor Dual #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Functor Last #

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor First #

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor STM #

Since: base-4.3.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

fmap :: (a -> b) -> STM a -> STM b #

(<$) :: a -> STM b -> STM a #

Functor Handler #

Since: base-4.6.0.0

Instance details

Defined in Control.Exception

Methods

fmap :: (a -> b) -> Handler a -> Handler b #

(<$) :: a -> Handler b -> Handler a #

Functor Identity #

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

fmap :: (a -> b) -> Identity a -> Identity b #

(<$) :: a -> Identity b -> Identity a #

Functor ZipList #

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Functor ArgDescr #

Since: base-4.6.0.0

Instance details

Defined in System.Console.GetOpt

Methods

fmap :: (a -> b) -> ArgDescr a -> ArgDescr b #

(<$) :: a -> ArgDescr b -> ArgDescr a #

Functor OptDescr #

Since: base-4.6.0.0

Instance details

Defined in System.Console.GetOpt

Methods

fmap :: (a -> b) -> OptDescr a -> OptDescr b #

(<$) :: a -> OptDescr b -> OptDescr a #

Functor ArgOrder #

Since: base-4.6.0.0

Instance details

Defined in System.Console.GetOpt

Methods

fmap :: (a -> b) -> ArgOrder a -> ArgOrder b #

(<$) :: a -> ArgOrder b -> ArgOrder a #

Functor Option #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> Option a -> Option b #

(<$) :: a -> Option b -> Option a #

Functor Last #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor First #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Max #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> Max a -> Max b #

(<$) :: a -> Max b -> Max a #

Functor Min #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> Min a -> Min b #

(<$) :: a -> Min b -> Min a #

Functor Complex #

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

fmap :: (a -> b) -> Complex a -> Complex b #

(<$) :: a -> Complex b -> Complex a #

Functor (Either a) #

Since: base-3.0

Instance details

Defined in Data.Either

Methods

fmap :: (a0 -> b) -> Either a a0 -> Either a b #

(<$) :: a0 -> Either a b -> Either a a0 #

Functor (V1 :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b #

(<$) :: a -> V1 b -> V1 a #

Functor (U1 :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b #

(<$) :: a -> U1 b -> U1 a #

Functor ((,) a) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b) -> (a, a0) -> (a, b) #

(<$) :: a0 -> (a, b) -> (a, a0) #

Functor (ST s) #

Since: base-2.1

Instance details

Defined in GHC.ST

Methods

fmap :: (a -> b) -> ST s a -> ST s b #

(<$) :: a -> ST s b -> ST s a #

Functor (Array i) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

fmap :: (a -> b) -> Array i a -> Array i b #

(<$) :: a -> Array i b -> Array i a #

Functor (Proxy :: Type -> Type) #

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b #

(<$) :: a -> Proxy b -> Proxy a #

Arrow a => Functor (ArrowMonad a) #

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

(<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 #

Monad m => Functor (WrappedMonad m) #

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a #

Functor (ST s) #

Since: base-2.1

Instance details

Defined in Control.Monad.ST.Lazy.Imp

Methods

fmap :: (a -> b) -> ST s a -> ST s b #

(<$) :: a -> ST s b -> ST s a #

Functor (Arg a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a0 -> b) -> Arg a a0 -> Arg a b #

(<$) :: a0 -> Arg a b -> Arg a a0 #

Functor f => Functor (Rec1 f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b #

(<$) :: a -> Rec1 f b -> Rec1 f a #

Functor (URec Char :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b #

(<$) :: a -> URec Char b -> URec Char a #

Functor (URec Double :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Functor (URec Float :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Functor (URec Int :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Functor (URec Word :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Functor (URec (Ptr ()) :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a #

Functor f => Functor (Alt f) #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

Functor f => Functor (Ap f) #

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b #

(<$) :: a -> Ap f b -> Ap f a #

Functor (Const m :: Type -> Type) #

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

Arrow a => Functor (WrappedArrow a b) #

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 #

(<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 #

Functor ((->) r :: Type -> Type) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b #

(<$) :: a -> (r -> b) -> r -> a #

Functor (K1 i c :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b #

(<$) :: a -> K1 i c b -> K1 i c a #

(Functor f, Functor g) => Functor (f :+: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b #

(<$) :: a -> (f :+: g) b -> (f :+: g) a #

(Functor f, Functor g) => Functor (f :*: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b #

(<$) :: a -> (f :*: g) b -> (f :*: g) a #

(Functor f, Functor g) => Functor (Sum f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

fmap :: (a -> b) -> Sum f g a -> Sum f g b #

(<$) :: a -> Sum f g b -> Sum f g a #

(Functor f, Functor g) => Functor (Product f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

fmap :: (a -> b) -> Product f g a -> Product f g b #

(<$) :: a -> Product f g b -> Product f g a #

Functor f => Functor (M1 i c f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b #

(<$) :: a -> M1 i c f b -> M1 i c f a #

(Functor f, Functor g) => Functor (f :.: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b #

(<$) :: a -> (f :.: g) b -> (f :.: g) a #

(Functor f, Functor g) => Functor (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fmap :: (a -> b) -> Compose f g a -> Compose f g b #

(<$) :: a -> Compose f g b -> Compose f g a #

class Functor f => Applicative f where #

A functor with application, providing operations to

  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*> and liftA2).

A minimal complete definition must include implementations of pure and of either <*> or liftA2. If it defines both, then they must behave the same as their default definitions:

(<*>) = liftA2 id
liftA2 f x y = f <$> x <*> y

Further, any definition must satisfy the following:

Identity
pure id <*> v = v
Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
Homomorphism
pure f <*> pure x = pure (f x)
Interchange
u <*> pure y = pure ($ y) <*> u

The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:

As a consequence of these laws, the Functor instance for f will satisfy

It may be useful to note that supposing

forall x y. p (q x y) = f x . g y

it follows from the above that

liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v

If f is also a Monad, it should satisfy

(which implies that pure and <*> satisfy the applicative functor laws).

Minimal complete definition

pure, ((<*>) | liftA2)

Methods

pure :: a -> f a #

Lift a value.

(<*>) :: f (a -> b) -> f a -> f b infixl 4 #

Sequential application.

A few functors support an implementation of <*> that is more efficient than the default one.

liftA2 :: (a -> b -> c) -> f a -> f b -> f c #

Lift a binary function to actions.

Some functors support an implementation of liftA2 that is more efficient than the default one. In particular, if fmap is an expensive operation, it is likely better to use liftA2 than to fmap over the structure and then use <*>.

(*>) :: f a -> f b -> f b infixl 4 #

Sequence actions, discarding the value of the first argument.

(<*) :: f a -> f b -> f a infixl 4 #

Sequence actions, discarding the value of the second argument.

Instances

Instances details
Applicative [] #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> [a] #

(<*>) :: [a -> b] -> [a] -> [b] #

liftA2 :: (a -> b -> c) -> [a] -> [b] -> [c] #

(*>) :: [a] -> [b] -> [b] #

(<*) :: [a] -> [b] -> [a] #

Applicative Maybe #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

liftA2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Applicative IO #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> IO a #

(<*>) :: IO (a -> b) -> IO a -> IO b #

liftA2 :: (a -> b -> c) -> IO a -> IO b -> IO c #

(*>) :: IO a -> IO b -> IO b #

(<*) :: IO a -> IO b -> IO a #

Applicative Par1 #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> Par1 a #

(<*>) :: Par1 (a -> b) -> Par1 a -> Par1 b #

liftA2 :: (a -> b -> c) -> Par1 a -> Par1 b -> Par1 c #

(*>) :: Par1 a -> Par1 b -> Par1 b #

(<*) :: Par1 a -> Par1 b -> Par1 a #

Applicative NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

pure :: a -> NonEmpty a #

(<*>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b #

liftA2 :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

(*>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

(<*) :: NonEmpty a -> NonEmpty b -> NonEmpty a #

Applicative NoIO #

Since: base-4.8.0.0

Instance details

Defined in GHC.GHCi

Methods

pure :: a -> NoIO a #

(<*>) :: NoIO (a -> b) -> NoIO a -> NoIO b #

liftA2 :: (a -> b -> c) -> NoIO a -> NoIO b -> NoIO c #

(*>) :: NoIO a -> NoIO b -> NoIO b #

(<*) :: NoIO a -> NoIO b -> NoIO a #

Applicative ReadP #

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

pure :: a -> ReadP a #

(<*>) :: ReadP (a -> b) -> ReadP a -> ReadP b #

liftA2 :: (a -> b -> c) -> ReadP a -> ReadP b -> ReadP c #

(*>) :: ReadP a -> ReadP b -> ReadP b #

(<*) :: ReadP a -> ReadP b -> ReadP a #

Applicative ReadPrec #

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

pure :: a -> ReadPrec a #

(<*>) :: ReadPrec (a -> b) -> ReadPrec a -> ReadPrec b #

liftA2 :: (a -> b -> c) -> ReadPrec a -> ReadPrec b -> ReadPrec c #

(*>) :: ReadPrec a -> ReadPrec b -> ReadPrec b #

(<*) :: ReadPrec a -> ReadPrec b -> ReadPrec a #

Applicative Down #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

pure :: a -> Down a #

(<*>) :: Down (a -> b) -> Down a -> Down b #

liftA2 :: (a -> b -> c) -> Down a -> Down b -> Down c #

(*>) :: Down a -> Down b -> Down b #

(<*) :: Down a -> Down b -> Down a #

Applicative Product #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

liftA2 :: (a -> b -> c) -> Product a -> Product b -> Product c #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Applicative Sum #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

liftA2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Applicative Dual #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

liftA2 :: (a -> b -> c) -> Dual a -> Dual b -> Dual c #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Applicative Last #

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Applicative First #

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Applicative STM #

Since: base-4.8.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

pure :: a -> STM a #

(<*>) :: STM (a -> b) -> STM a -> STM b #

liftA2 :: (a -> b -> c) -> STM a -> STM b -> STM c #

(*>) :: STM a -> STM b -> STM b #

(<*) :: STM a -> STM b -> STM a #

Applicative Identity #

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

pure :: a -> Identity a #

(<*>) :: Identity (a -> b) -> Identity a -> Identity b #

liftA2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

(*>) :: Identity a -> Identity b -> Identity b #

(<*) :: Identity a -> Identity b -> Identity a #

Applicative ZipList #
f <$> ZipList xs1 <*> ... <*> ZipList xsN
    = ZipList (zipWithN f xs1 ... xsN)

where zipWithN refers to the zipWith function of the appropriate arity (zipWith, zipWith3, zipWith4, ...). For example:

(\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
    = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
    = ZipList {getZipList = ["a5","b6b6","c7c7c7"]}

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a -> ZipList a #

(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b #

liftA2 :: (a -> b -> c) -> ZipList a -> ZipList b -> ZipList c #

(*>) :: ZipList a -> ZipList b -> ZipList b #

(<*) :: ZipList a -> ZipList b -> ZipList a #

Applicative Option #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Option a #

(<*>) :: Option (a -> b) -> Option a -> Option b #

liftA2 :: (a -> b -> c) -> Option a -> Option b -> Option c #

(*>) :: Option a -> Option b -> Option b #

(<*) :: Option a -> Option b -> Option a #

Applicative Last #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Applicative First #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Applicative Max #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Max a #

(<*>) :: Max (a -> b) -> Max a -> Max b #

liftA2 :: (a -> b -> c) -> Max a -> Max b -> Max c #

(*>) :: Max a -> Max b -> Max b #

(<*) :: Max a -> Max b -> Max a #

Applicative Min #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Min a #

(<*>) :: Min (a -> b) -> Min a -> Min b #

liftA2 :: (a -> b -> c) -> Min a -> Min b -> Min c #

(*>) :: Min a -> Min b -> Min b #

(<*) :: Min a -> Min b -> Min a #

Applicative Complex #

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

pure :: a -> Complex a #

(<*>) :: Complex (a -> b) -> Complex a -> Complex b #

liftA2 :: (a -> b -> c) -> Complex a -> Complex b -> Complex c #

(*>) :: Complex a -> Complex b -> Complex b #

(<*) :: Complex a -> Complex b -> Complex a #

Applicative (Either e) #

Since: base-3.0

Instance details

Defined in Data.Either

Methods

pure :: a -> Either e a #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b #

liftA2 :: (a -> b -> c) -> Either e a -> Either e b -> Either e c #

(*>) :: Either e a -> Either e b -> Either e b #

(<*) :: Either e a -> Either e b -> Either e a #

Applicative (U1 :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> U1 a #

(<*>) :: U1 (a -> b) -> U1 a -> U1 b #

liftA2 :: (a -> b -> c) -> U1 a -> U1 b -> U1 c #

(*>) :: U1 a -> U1 b -> U1 b #

(<*) :: U1 a -> U1 b -> U1 a #

Monoid a => Applicative ((,) a) #

For tuples, the Monoid constraint on a determines how the first values merge. For example, Strings concatenate:

("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a0 -> (a, a0) #

(<*>) :: (a, a0 -> b) -> (a, a0) -> (a, b) #

liftA2 :: (a0 -> b -> c) -> (a, a0) -> (a, b) -> (a, c) #

(*>) :: (a, a0) -> (a, b) -> (a, b) #

(<*) :: (a, a0) -> (a, b) -> (a, a0) #

Applicative (ST s) #

Since: base-4.4.0.0

Instance details

Defined in GHC.ST

Methods

pure :: a -> ST s a #

(<*>) :: ST s (a -> b) -> ST s a -> ST s b #

liftA2 :: (a -> b -> c) -> ST s a -> ST s b -> ST s c #

(*>) :: ST s a -> ST s b -> ST s b #

(<*) :: ST s a -> ST s b -> ST s a #

Applicative (Proxy :: Type -> Type) #

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

pure :: a -> Proxy a #

(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b #

liftA2 :: (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c #

(*>) :: Proxy a -> Proxy b -> Proxy b #

(<*) :: Proxy a -> Proxy b -> Proxy a #

Arrow a => Applicative (ArrowMonad a) #

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

pure :: a0 -> ArrowMonad a a0 #

(<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c #

(*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

(<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 #

Monad m => Applicative (WrappedMonad m) #

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a -> WrappedMonad m a #

(<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c #

(*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

(<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a #

Applicative (ST s) #

Since: base-2.1

Instance details

Defined in Control.Monad.ST.Lazy.Imp

Methods

pure :: a -> ST s a #

(<*>) :: ST s (a -> b) -> ST s a -> ST s b #

liftA2 :: (a -> b -> c) -> ST s a -> ST s b -> ST s c #

(*>) :: ST s a -> ST s b -> ST s b #

(<*) :: ST s a -> ST s b -> ST s a #

Applicative f => Applicative (Rec1 f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> Rec1 f a #

(<*>) :: Rec1 f (a -> b) -> Rec1 f a -> Rec1 f b #

liftA2 :: (a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c #

(*>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

(<*) :: Rec1 f a -> Rec1 f b -> Rec1 f a #

Applicative f => Applicative (Alt f) #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Alt f a #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

(*>) :: Alt f a -> Alt f b -> Alt f b #

(<*) :: Alt f a -> Alt f b -> Alt f a #

Applicative f => Applicative (Ap f) #

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Ap f a #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

(*>) :: Ap f a -> Ap f b -> Ap f b #

(<*) :: Ap f a -> Ap f b -> Ap f a #

Monoid m => Applicative (Const m :: Type -> Type) #

Since: base-2.0.1

Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c #

(*>) :: Const m a -> Const m b -> Const m b #

(<*) :: Const m a -> Const m b -> Const m a #

Arrow a => Applicative (WrappedArrow a b) #

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a0 -> WrappedArrow a b a0 #

(<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 #

liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c #

(*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 #

(<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 #

Applicative ((->) a :: Type -> Type) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a0 -> a -> a0 #

(<*>) :: (a -> (a0 -> b)) -> (a -> a0) -> a -> b #

liftA2 :: (a0 -> b -> c) -> (a -> a0) -> (a -> b) -> a -> c #

(*>) :: (a -> a0) -> (a -> b) -> a -> b #

(<*) :: (a -> a0) -> (a -> b) -> a -> a0 #

Monoid c => Applicative (K1 i c :: Type -> Type) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> K1 i c a #

(<*>) :: K1 i c (a -> b) -> K1 i c a -> K1 i c b #

liftA2 :: (a -> b -> c0) -> K1 i c a -> K1 i c b -> K1 i c c0 #

(*>) :: K1 i c a -> K1 i c b -> K1 i c b #

(<*) :: K1 i c a -> K1 i c b -> K1 i c a #

(Applicative f, Applicative g) => Applicative (f :*: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :*: g) a #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b #

liftA2 :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a #

(Applicative f, Applicative g) => Applicative (Product f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

pure :: a -> Product f g a #

(<*>) :: Product f g (a -> b) -> Product f g a -> Product f g b #

liftA2 :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c #

(*>) :: Product f g a -> Product f g b -> Product f g b #

(<*) :: Product f g a -> Product f g b -> Product f g a #

Applicative f => Applicative (M1 i c f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> M1 i c f a #

(<*>) :: M1 i c f (a -> b) -> M1 i c f a -> M1 i c f b #

liftA2 :: (a -> b -> c0) -> M1 i c f a -> M1 i c f b -> M1 i c f c0 #

(*>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

(<*) :: M1 i c f a -> M1 i c f b -> M1 i c f a #

(Applicative f, Applicative g) => Applicative (f :.: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :.: g) a #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b #

liftA2 :: (a -> b -> c) -> (f :.: g) a -> (f :.: g) b -> (f :.: g) c #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a #

(Applicative f, Applicative g) => Applicative (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

pure :: a -> Compose f g a #

(<*>) :: Compose f g (a -> b) -> Compose f g a -> Compose f g b #

liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c #

(*>) :: Compose f g a -> Compose f g b -> Compose f g b #

(<*) :: Compose f g a -> Compose f g b -> Compose f g a #

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Instances should satisfy the following:

Associativity
x <> (y <> z) = (x <> y) <> z

Since: base-4.9.0.0

Minimal complete definition

(<>)

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

sconcat :: NonEmpty a -> a #

Reduce a non-empty list with <>

The default definition should be sufficient, but this can be overridden for efficiency.

stimes :: Integral b => b -> a -> a #

Repeat a value n times.

Given that this works on a Semigroup it is allowed to fail if you request 0 or fewer repetitions, and the default definition will do so.

By making this a member of the class, idempotent semigroups and monoids can upgrade this to execute in O(1) by picking stimes = stimesIdempotent or stimes = stimesIdempotentMonoid respectively.

Instances

Instances details
Semigroup Ordering #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Semigroup () #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup Any #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Semigroup All #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Semigroup Lifetime #

Since: base-4.10.0.0

Instance details

Defined in GHC.Event.Internal

Semigroup Event #

Since: base-4.10.0.0

Instance details

Defined in GHC.Event.Internal

Methods

(<>) :: Event -> Event -> Event #

sconcat :: NonEmpty Event -> Event #

stimes :: Integral b => b -> Event -> Event #

Semigroup Void #

Since: base-4.9.0.0

Instance details

Defined in Data.Void

Methods

(<>) :: Void -> Void -> Void #

sconcat :: NonEmpty Void -> Void #

stimes :: Integral b => b -> Void -> Void #

Semigroup [a] #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

Semigroup a => Semigroup (Maybe a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (IO a) #

Since: base-4.10.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Semigroup p => Semigroup (Par1 p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: Par1 p -> Par1 p -> Par1 p #

sconcat :: NonEmpty (Par1 p) -> Par1 p #

stimes :: Integral b => b -> Par1 p -> Par1 p #

Semigroup (NonEmpty a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Semigroup a => Semigroup (Down a) #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(<>) :: Down a -> Down a -> Down a #

sconcat :: NonEmpty (Down a) -> Down a #

stimes :: Integral b => b -> Down a -> Down a #

Num a => Semigroup (Product a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Num a => Semigroup (Sum a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Semigroup (Endo a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Semigroup a => Semigroup (Dual a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Semigroup (Last a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup (First a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup a => Semigroup (Identity a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Semigroup a => Semigroup (Option a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Monoid m => Semigroup (WrappedMonoid m) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Semigroup (Last a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup (First a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Ord a => Semigroup (Max a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Ord a => Semigroup (Min a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Semigroup (Equivalence a) # 
Instance details

Defined in Data.Functor.Contravariant

Semigroup (Comparison a) # 
Instance details

Defined in Data.Functor.Contravariant

Semigroup (Predicate a) # 
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Predicate a -> Predicate a -> Predicate a #

sconcat :: NonEmpty (Predicate a) -> Predicate a #

stimes :: Integral b => b -> Predicate a -> Predicate a #

Semigroup b => Semigroup (a -> b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b0 => b0 -> (a -> b) -> a -> b #

Semigroup (Either a b) #

Since: base-4.9.0.0

Instance details

Defined in Data.Either

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b0 => b0 -> Either a b -> Either a b #

Semigroup (V1 p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: V1 p -> V1 p -> V1 p #

sconcat :: NonEmpty (V1 p) -> V1 p #

stimes :: Integral b => b -> V1 p -> V1 p #

Semigroup (U1 p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: U1 p -> U1 p -> U1 p #

sconcat :: NonEmpty (U1 p) -> U1 p #

stimes :: Integral b => b -> U1 p -> U1 p #

(Semigroup a, Semigroup b) => Semigroup (a, b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b0 => b0 -> (a, b) -> (a, b) #

Semigroup a => Semigroup (ST s a) #

Since: base-4.11.0.0

Instance details

Defined in GHC.ST

Methods

(<>) :: ST s a -> ST s a -> ST s a #

sconcat :: NonEmpty (ST s a) -> ST s a #

stimes :: Integral b => b -> ST s a -> ST s a #

Semigroup (Proxy s) #

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

(<>) :: Proxy s -> Proxy s -> Proxy s #

sconcat :: NonEmpty (Proxy s) -> Proxy s #

stimes :: Integral b => b -> Proxy s -> Proxy s #

Semigroup a => Semigroup (Op a b) # 
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Op a b -> Op a b -> Op a b #

sconcat :: NonEmpty (Op a b) -> Op a b #

stimes :: Integral b0 => b0 -> Op a b -> Op a b #

Semigroup (f p) => Semigroup (Rec1 f p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: Rec1 f p -> Rec1 f p -> Rec1 f p #

sconcat :: NonEmpty (Rec1 f p) -> Rec1 f p #

stimes :: Integral b => b -> Rec1 f p -> Rec1 f p #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b0 => b0 -> (a, b, c) -> (a, b, c) #

Alternative f => Semigroup (Alt f a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a #

sconcat :: NonEmpty (Alt f a) -> Alt f a #

stimes :: Integral b => b -> Alt f a -> Alt f a #

(Applicative f, Semigroup a) => Semigroup (Ap f a) #

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a #

sconcat :: NonEmpty (Ap f a) -> Ap f a #

stimes :: Integral b => b -> Ap f a -> Ap f a #

Semigroup a => Semigroup (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

Semigroup c => Semigroup (K1 i c p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: K1 i c p -> K1 i c p -> K1 i c p #

sconcat :: NonEmpty (K1 i c p) -> K1 i c p #

stimes :: Integral b => b -> K1 i c p -> K1 i c p #

(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

sconcat :: NonEmpty ((f :*: g) p) -> (f :*: g) p #

stimes :: Integral b => b -> (f :*: g) p -> (f :*: g) p #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b0 => b0 -> (a, b, c, d) -> (a, b, c, d) #

Semigroup (f p) => Semigroup (M1 i c f p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: M1 i c f p -> M1 i c f p -> M1 i c f p #

sconcat :: NonEmpty (M1 i c f p) -> M1 i c f p #

stimes :: Integral b => b -> M1 i c f p -> M1 i c f p #

Semigroup (f (g p)) => Semigroup ((f :.: g) p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

sconcat :: NonEmpty ((f :.: g) p) -> (f :.: g) p #

stimes :: Integral b => b -> (f :.: g) p -> (f :.: g) p #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b0 => b0 -> (a, b, c, d, e) -> (a, b, c, d, e) #

class Semigroup a => Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

Right identity
x <> mempty = x
Left identity
mempty <> x = x
Associativity
x <> (y <> z) = (x <> y) <> z (Semigroup law)
Concatenation
mconcat = foldr (<>) mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

Minimal complete definition

mempty

Methods

mempty :: a #

Identity of mappend

mappend :: a -> a -> a #

An associative operation

NOTE: This method is redundant and has the default implementation mappend = (<>) since base-4.11.0.0.

mconcat :: [a] -> a #

Fold a list using the monoid.

For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

Instances

Instances details
Monoid Ordering #

Since: base-2.1

Instance details

Defined in GHC.Base

Monoid () #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid Any #

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid All #

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Lifetime #

mappend takes the longer of two lifetimes.

Since: base-4.8.0.0

Instance details

Defined in GHC.Event.Internal

Monoid Event #

Since: base-4.4.0.0

Instance details

Defined in GHC.Event.Internal

Methods

mempty :: Event #

mappend :: Event -> Event -> Event #

mconcat :: [Event] -> Event #

Monoid [a] #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Semigroup a => Monoid (Maybe a) #

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S."

Since 4.11.0: constraint on inner a value generalised from Monoid to Semigroup.

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (IO a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

Monoid p => Monoid (Par1 p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: Par1 p #

mappend :: Par1 p -> Par1 p -> Par1 p #

mconcat :: [Par1 p] -> Par1 p #

Monoid a => Monoid (Down a) #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

mempty :: Down a #

mappend :: Down a -> Down a -> Down a #

mconcat :: [Down a] -> Down a #

Num a => Monoid (Product a) #

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Num a => Monoid (Sum a) #

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Monoid (Endo a) #

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Monoid a => Monoid (Dual a) #

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Last a) #

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Monoid (First a) #

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid a => Monoid (Identity a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

Semigroup a => Monoid (Option a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

Monoid m => Monoid (WrappedMonoid m) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

(Ord a, Bounded a) => Monoid (Max a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

(Ord a, Bounded a) => Monoid (Min a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

Monoid (Equivalence a) # 
Instance details

Defined in Data.Functor.Contravariant

Monoid (Comparison a) # 
Instance details

Defined in Data.Functor.Contravariant

Monoid (Predicate a) # 
Instance details

Defined in Data.Functor.Contravariant

Monoid b => Monoid (a -> b) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

Monoid (U1 p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: U1 p #

mappend :: U1 p -> U1 p -> U1 p #

mconcat :: [U1 p] -> U1 p #

(Monoid a, Monoid b) => Monoid (a, b) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid a => Monoid (ST s a) #

Since: base-4.11.0.0

Instance details

Defined in GHC.ST

Methods

mempty :: ST s a #

mappend :: ST s a -> ST s a -> ST s a #

mconcat :: [ST s a] -> ST s a #

Monoid (Proxy s) #

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

mempty :: Proxy s #

mappend :: Proxy s -> Proxy s -> Proxy s #

mconcat :: [Proxy s] -> Proxy s #

Monoid a => Monoid (Op a b) # 
Instance details

Defined in Data.Functor.Contravariant

Methods

mempty :: Op a b #

mappend :: Op a b -> Op a b -> Op a b #

mconcat :: [Op a b] -> Op a b #

Monoid (f p) => Monoid (Rec1 f p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: Rec1 f p #

mappend :: Rec1 f p -> Rec1 f p -> Rec1 f p #

mconcat :: [Rec1 f p] -> Rec1 f p #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

Alternative f => Monoid (Alt f a) #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

(Applicative f, Monoid a) => Monoid (Ap f a) #

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mempty :: Ap f a #

mappend :: Ap f a -> Ap f a -> Ap f a #

mconcat :: [Ap f a] -> Ap f a #

Monoid a => Monoid (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

Monoid c => Monoid (K1 i c p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: K1 i c p #

mappend :: K1 i c p -> K1 i c p -> K1 i c p #

mconcat :: [K1 i c p] -> K1 i c p #

(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: (f :*: g) p #

mappend :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

mconcat :: [(f :*: g) p] -> (f :*: g) p #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

Monoid (f p) => Monoid (M1 i c f p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: M1 i c f p #

mappend :: M1 i c f p -> M1 i c f p -> M1 i c f p #

mconcat :: [M1 i c f p] -> M1 i c f p #

Monoid (f (g p)) => Monoid ((f :.: g) p) #

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: (f :.: g) p #

mappend :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

mconcat :: [(f :.: g) p] -> (f :.: g) p #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

data Opaque #

Constructors

forall a. O a 

type String = [Char] #

A String is a list of characters. String constants in Haskell are values of type String.

data NonEmpty a #

Non-empty (and non-strict) list type.

Since: base-4.9.0.0

Constructors

a :| [a] infixr 5 

Instances

Instances details
Monad NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

Functor NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

MonadFix NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> NonEmpty a) -> NonEmpty a #

Applicative NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

pure :: a -> NonEmpty a #

(<*>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b #

liftA2 :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

(*>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

(<*) :: NonEmpty a -> NonEmpty b -> NonEmpty a #

Foldable NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => NonEmpty m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a #

toList :: NonEmpty a -> [a] #

null :: NonEmpty a -> Bool #

length :: NonEmpty a -> Int #

elem :: Eq a => a -> NonEmpty a -> Bool #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

sum :: Num a => NonEmpty a -> a #

product :: Num a => NonEmpty a -> a #

Traversable NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

MonadZip NonEmpty #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: NonEmpty a -> NonEmpty b -> NonEmpty (a, b) #

mzipWith :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

munzip :: NonEmpty (a, b) -> (NonEmpty a, NonEmpty b) #

Show1 NonEmpty #

Since: base-4.10.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> NonEmpty a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [NonEmpty a] -> ShowS #

Read1 NonEmpty #

Since: base-4.10.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (NonEmpty a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [NonEmpty a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (NonEmpty a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [NonEmpty a] #

Ord1 NonEmpty #

Since: base-4.10.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a -> b -> Ordering) -> NonEmpty a -> NonEmpty b -> Ordering #

Eq1 NonEmpty #

Since: base-4.10.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a -> b -> Bool) -> NonEmpty a -> NonEmpty b -> Bool #

IsList (NonEmpty a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Exts

Associated Types

type Item (NonEmpty a) #

Methods

fromList :: [Item (NonEmpty a)] -> NonEmpty a #

fromListN :: Int -> [Item (NonEmpty a)] -> NonEmpty a #

toList :: NonEmpty a -> [Item (NonEmpty a)] #

Eq a => Eq (NonEmpty a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool Source #

(/=) :: NonEmpty a -> NonEmpty a -> Bool Source #

Data a => Data (NonEmpty a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) #

toConstr :: NonEmpty a -> Constr #

dataTypeOf :: NonEmpty a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) #

gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r #

gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) #

Ord a => Ord (NonEmpty a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Read a => Read (NonEmpty a) #

Since: base-4.11.0.0

Instance details

Defined in GHC.Read

Show a => Show (NonEmpty a) #

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

Generic (NonEmpty a) #

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep (NonEmpty a) :: Type -> Type #

Methods

from :: NonEmpty a -> Rep (NonEmpty a) x #

to :: Rep (NonEmpty a) x -> NonEmpty a #

Semigroup (NonEmpty a) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Generic1 NonEmpty #

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Associated Types

type Rep1 NonEmpty :: k -> Type #

Methods

from1 :: forall (a :: k). NonEmpty a -> Rep1 NonEmpty a #

to1 :: forall (a :: k). Rep1 NonEmpty a -> NonEmpty a #

type Rep (NonEmpty a) # 
Instance details

Defined in GHC.Generics

type Item (NonEmpty a) # 
Instance details

Defined in GHC.Exts

type Item (NonEmpty a) = a
type Rep1 NonEmpty # 
Instance details

Defined in GHC.Generics

class (Alternative m, Monad m) => MonadPlus m where #

Monads that also support choice and failure.

Minimal complete definition

Nothing

Methods

mzero :: m a #

The identity of mplus. It should also satisfy the equations

mzero >>= f  =  mzero
v >> mzero   =  mzero

The default definition is

mzero = empty

mplus :: m a -> m a -> m a #

An associative operation. The default definition is

mplus = (<|>)

Instances

Instances details
MonadPlus [] #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mzero :: [a] #

mplus :: [a] -> [a] -> [a] #

MonadPlus Maybe #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mzero :: Maybe a #

mplus :: Maybe a -> Maybe a -> Maybe a #

MonadPlus IO #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

mzero :: IO a #

mplus :: IO a -> IO a -> IO a #

MonadPlus ReadP #

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

mzero :: ReadP a #

mplus :: ReadP a -> ReadP a -> ReadP a #

MonadPlus ReadPrec #

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

mzero :: ReadPrec a #

mplus :: ReadPrec a -> ReadPrec a -> ReadPrec a #

MonadPlus STM #

Since: base-4.3.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

mzero :: STM a #

mplus :: STM a -> STM a -> STM a #

MonadPlus Option #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mzero :: Option a #

mplus :: Option a -> Option a -> Option a #

MonadPlus (U1 :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: U1 a #

mplus :: U1 a -> U1 a -> U1 a #

MonadPlus (Proxy :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

mzero :: Proxy a #

mplus :: Proxy a -> Proxy a -> Proxy a #

(ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a) #

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

mzero :: ArrowMonad a a0 #

mplus :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

MonadPlus f => MonadPlus (Rec1 f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: Rec1 f a #

mplus :: Rec1 f a -> Rec1 f a -> Rec1 f a #

MonadPlus f => MonadPlus (Alt f) #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mzero :: Alt f a #

mplus :: Alt f a -> Alt f a -> Alt f a #

MonadPlus f => MonadPlus (Ap f) #

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mzero :: Ap f a #

mplus :: Ap f a -> Ap f a -> Ap f a #

(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: (f :*: g) a #

mplus :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a #

(MonadPlus f, MonadPlus g) => MonadPlus (Product f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

mzero :: Product f g a #

mplus :: Product f g a -> Product f g a -> Product f g a #

MonadPlus f => MonadPlus (M1 i c f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: M1 i c f a #

mplus :: M1 i c f a -> M1 i c f a -> M1 i c f a #

class Applicative f => Alternative f where #

A monoid on applicative functors.

If defined, some and many should be the least solutions of the equations:

Minimal complete definition

empty, (<|>)

Methods

empty :: f a #

The identity of <|>

(<|>) :: f a -> f a -> f a infixl 3 #

An associative binary operation

some :: f a -> f [a] #

One or more.

many :: f a -> f [a] #

Zero or more.

Instances

Instances details
Alternative [] #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

empty :: [a] #

(<|>) :: [a] -> [a] -> [a] #

some :: [a] -> [[a]] #

many :: [a] -> [[a]] #

Alternative Maybe #

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

Alternative IO #

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

empty :: IO a #

(<|>) :: IO a -> IO a -> IO a #

some :: IO a -> IO [a] #

many :: IO a -> IO [a] #

Alternative ReadP #

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

empty :: ReadP a #

(<|>) :: ReadP a -> ReadP a -> ReadP a #

some :: ReadP a -> ReadP [a] #

many :: ReadP a -> ReadP [a] #

Alternative ReadPrec #

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

empty :: ReadPrec a #

(<|>) :: ReadPrec a -> ReadPrec a -> ReadPrec a #

some :: ReadPrec a -> ReadPrec [a] #

many :: ReadPrec a -> ReadPrec [a] #

Alternative STM #

Since: base-4.8.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

empty :: STM a #

(<|>) :: STM a -> STM a -> STM a #

some :: STM a -> STM [a] #

many :: STM a -> STM [a] #

Alternative ZipList #

Since: base-4.11.0.0

Instance details

Defined in Control.Applicative

Methods

empty :: ZipList a #

(<|>) :: ZipList a -> ZipList a -> ZipList a #

some :: ZipList a -> ZipList [a] #

many :: ZipList a -> ZipList [a] #

Alternative Option #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

empty :: Option a #

(<|>) :: Option a -> Option a -> Option a #

some :: Option a -> Option [a] #

many :: Option a -> Option [a] #

Alternative (U1 :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: U1 a #

(<|>) :: U1 a -> U1 a -> U1 a #

some :: U1 a -> U1 [a] #

many :: U1 a -> U1 [a] #

Alternative (Proxy :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

empty :: Proxy a #

(<|>) :: Proxy a -> Proxy a -> Proxy a #

some :: Proxy a -> Proxy [a] #

many :: Proxy a -> Proxy [a] #

ArrowPlus a => Alternative (ArrowMonad a) #

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

empty :: ArrowMonad a a0 #

(<|>) :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

some :: ArrowMonad a a0 -> ArrowMonad a [a0] #

many :: ArrowMonad a a0 -> ArrowMonad a [a0] #

MonadPlus m => Alternative (WrappedMonad m) #

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

empty :: WrappedMonad m a #

(<|>) :: WrappedMonad m a -> WrappedMonad m a -> WrappedMonad m a #

some :: WrappedMonad m a -> WrappedMonad m [a] #

many :: WrappedMonad m a -> WrappedMonad m [a] #

Alternative f => Alternative (Rec1 f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: Rec1 f a #

(<|>) :: Rec1 f a -> Rec1 f a -> Rec1 f a #

some :: Rec1 f a -> Rec1 f [a] #

many :: Rec1 f a -> Rec1 f [a] #

Alternative f => Alternative (Alt f) #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

empty :: Alt f a #

(<|>) :: Alt f a -> Alt f a -> Alt f a #

some :: Alt f a -> Alt f [a] #

many :: Alt f a -> Alt f [a] #

Alternative f => Alternative (Ap f) #

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

empty :: Ap f a #

(<|>) :: Ap f a -> Ap f a -> Ap f a #

some :: Ap f a -> Ap f [a] #

many :: Ap f a -> Ap f [a] #

(ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b) #

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

empty :: WrappedArrow a b a0 #

(<|>) :: WrappedArrow a b a0 -> WrappedArrow a b a0 -> WrappedArrow a b a0 #

some :: WrappedArrow a b a0 -> WrappedArrow a b [a0] #

many :: WrappedArrow a b a0 -> WrappedArrow a b [a0] #

(Alternative f, Alternative g) => Alternative (f :*: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :*: g) a #

(<|>) :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a #

some :: (f :*: g) a -> (f :*: g) [a] #

many :: (f :*: g) a -> (f :*: g) [a] #

(Alternative f, Alternative g) => Alternative (Product f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

empty :: Product f g a #

(<|>) :: Product f g a -> Product f g a -> Product f g a #

some :: Product f g a -> Product f g [a] #

many :: Product f g a -> Product f g [a] #

Alternative f => Alternative (M1 i c f) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: M1 i c f a #

(<|>) :: M1 i c f a -> M1 i c f a -> M1 i c f a #

some :: M1 i c f a -> M1 i c f [a] #

many :: M1 i c f a -> M1 i c f [a] #

(Alternative f, Applicative g) => Alternative (f :.: g) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :.: g) a #

(<|>) :: (f :.: g) a -> (f :.: g) a -> (f :.: g) a #

some :: (f :.: g) a -> (f :.: g) [a] #

many :: (f :.: g) a -> (f :.: g) [a] #

(Alternative f, Applicative g) => Alternative (Compose f g) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

empty :: Compose f g a #

(<|>) :: Compose f g a -> Compose f g a -> Compose f g a #

some :: Compose f g a -> Compose f g [a] #

many :: Compose f g a -> Compose f g [a] #

(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 #

A variant of <*> with the arguments reversed.

liftA :: Applicative f => (a -> b) -> f a -> f b #

Lift a function to actions. This function may be used as a value for fmap in a Functor instance.

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #

Lift a ternary function to actions.

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #

Same as >>=, but with the arguments interchanged.

when :: Applicative f => Bool -> f () -> f () #

Conditional execution of Applicative expressions. For example,

when debug (putStrLn "Debugging")

will output the string Debugging if the Boolean value debug is True, and otherwise do nothing.

sequence :: Monad m => [m a] -> m [a] #

Evaluate each action in the sequence from left to right, and collect the results.

mapM :: Monad m => (a -> m b) -> [a] -> m [b] #

mapM f is equivalent to sequence . map f.

liftM :: Monad m => (a1 -> r) -> m a1 -> m r #

Promote a function to a monad.

liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right. For example,

liftM2 (+) [0,1] [0,2] = [0,2,1,3]
liftM2 (+) (Just 1) Nothing = Nothing

liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

ap :: Monad m => m (a -> b) -> m a -> m b #

In many situations, the liftM operations can be replaced by uses of ap, which promotes function application.

return f `ap` x1 `ap` ... `ap` xn

is equivalent to

liftMn f x1 x2 ... xn

mapFB :: (elt -> lst -> lst) -> (a -> elt) -> a -> lst -> lst #

ord :: Char -> Int #

The fromEnum method restricted to the type Char.

id :: a -> a #

Identity function.

id x = x

const :: a -> b -> a #

const x is a unary function which evaluates to x for all inputs.

>>> const 42 "hello"
42
>>> map (const 42) [0..3]
[42,42,42,42]

(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 #

Function composition.

flip :: (a -> b -> c) -> b -> a -> c #

flip f takes its (first) two arguments in the reverse order of f.

>>> flip (++) "hello" "world"
"worldhello"

($!) :: forall r a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #

Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.

until :: (a -> Bool) -> (a -> a) -> a -> a #

until p f yields the result of applying f until p holds.

asTypeOf :: a -> a -> a #

asTypeOf is a type-restricted version of const. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the second.

unIO :: IO a -> State# RealWorld -> (# State# RealWorld, a #) #

getTag :: a -> Int# #

Returns the tag of a constructor application; this function is used by the deriving code for Eq, Ord and Enum.

quotInt :: Int -> Int -> Int #

remInt :: Int -> Int -> Int #

divInt :: Int -> Int -> Int #

modInt :: Int -> Int -> Int #

quotRemInt :: Int -> Int -> (Int, Int) #

divModInt :: Int -> Int -> (Int, Int) #

divModInt# :: Int# -> Int# -> (# Int#, Int# #) #

shiftL# :: Word# -> Int# -> Word# #

Shift the argument left by the specified number of bits (which must be non-negative).

shiftRL# :: Word# -> Int# -> Word# #

Shift the argument right by the specified number of bits (which must be non-negative). The RL means "right, logical" (as opposed to RA for arithmetic) (although an arithmetic right shift wouldn't make sense for Word#)

iShiftL# :: Int# -> Int# -> Int# #

Shift the argument left by the specified number of bits (which must be non-negative).

iShiftRA# :: Int# -> Int# -> Int# #

Shift the argument right (signed) by the specified number of bits (which must be non-negative). The RA means "right, arithmetic" (as opposed to RL for logical)

iShiftRL# :: Int# -> Int# -> Int# #

Shift the argument right (unsigned) by the specified number of bits (which must be non-negative). The RL means "right, logical" (as opposed to RA for arithmetic)

module GHC.Magic

module GHC.Types

module GHC.Prim

module GHC.Err

module GHC.Maybe