base-4.13.0.0: Basic libraries
Copyright(c) The University of Glasgow 1994-2000
Licensesee libraries/base/LICENSE
Maintainercvs-ghc@haskell.org
Stabilityinternal
Portabilitynon-portable (GHC extensions)
Safe HaskellUnsafe
LanguageHaskell2010

GHC.Arr

Description

GHC's array implementation.

Synopsis

Documentation

class Ord a => Ix a where #

The Ix class is used to map a contiguous subrange of values in a type onto integers. It is used primarily for array indexing (see the array package).

The first argument (l,u) of each of these operations is a pair specifying the lower and upper bounds of a contiguous subrange of values.

An implementation is entitled to assume the following laws about these operations:

Minimal complete definition

range, (index | unsafeIndex), inRange

Methods

range :: (a, a) -> [a] #

The list of values in the subrange defined by a bounding pair.

index :: (a, a) -> a -> Int #

The position of a subscript in the subrange.

unsafeIndex :: (a, a) -> a -> Int #

Like index, but without checking that the value is in range.

inRange :: (a, a) -> a -> Bool #

Returns True the given subscript lies in the range defined the bounding pair.

rangeSize :: (a, a) -> Int #

The size of the subrange defined by a bounding pair.

unsafeRangeSize :: (a, a) -> Int #

like rangeSize, but without checking that the upper bound is in range.

Instances

Instances details
Ix Bool #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: (Bool, Bool) -> [Bool] #

index :: (Bool, Bool) -> Bool -> Int #

unsafeIndex :: (Bool, Bool) -> Bool -> Int #

inRange :: (Bool, Bool) -> Bool -> Bool #

rangeSize :: (Bool, Bool) -> Int #

unsafeRangeSize :: (Bool, Bool) -> Int #

Ix Char #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: (Char, Char) -> [Char] #

index :: (Char, Char) -> Char -> Int #

unsafeIndex :: (Char, Char) -> Char -> Int #

inRange :: (Char, Char) -> Char -> Bool #

rangeSize :: (Char, Char) -> Int #

unsafeRangeSize :: (Char, Char) -> Int #

Ix Int #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: (Int, Int) -> [Int] #

index :: (Int, Int) -> Int -> Int #

unsafeIndex :: (Int, Int) -> Int -> Int #

inRange :: (Int, Int) -> Int -> Bool #

rangeSize :: (Int, Int) -> Int #

unsafeRangeSize :: (Int, Int) -> Int #

Ix Int8 #

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

range :: (Int8, Int8) -> [Int8] #

index :: (Int8, Int8) -> Int8 -> Int #

unsafeIndex :: (Int8, Int8) -> Int8 -> Int #

inRange :: (Int8, Int8) -> Int8 -> Bool #

rangeSize :: (Int8, Int8) -> Int #

unsafeRangeSize :: (Int8, Int8) -> Int #

Ix Int16 #

Since: base-2.1

Instance details

Defined in GHC.Int

Ix Int32 #

Since: base-2.1

Instance details

Defined in GHC.Int

Ix Int64 #

Since: base-2.1

Instance details

Defined in GHC.Int

Ix Integer #

Since: base-2.1

Instance details

Defined in GHC.Arr

Ix Natural #

Since: base-4.8.0.0

Instance details

Defined in GHC.Arr

Ix Ordering #

Since: base-2.1

Instance details

Defined in GHC.Arr

Ix Word #

Since: base-4.6.0.0

Instance details

Defined in GHC.Arr

Methods

range :: (Word, Word) -> [Word] #

index :: (Word, Word) -> Word -> Int #

unsafeIndex :: (Word, Word) -> Word -> Int #

inRange :: (Word, Word) -> Word -> Bool #

rangeSize :: (Word, Word) -> Int #

unsafeRangeSize :: (Word, Word) -> Int #

Ix Word8 #

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word16 #

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word32 #

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word64 #

Since: base-2.1

Instance details

Defined in GHC.Word

Ix () #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: ((), ()) -> [()] #

index :: ((), ()) -> () -> Int #

unsafeIndex :: ((), ()) -> () -> Int #

inRange :: ((), ()) -> () -> Bool #

rangeSize :: ((), ()) -> Int #

unsafeRangeSize :: ((), ()) -> Int #

Ix GeneralCategory #

Since: base-2.1

Instance details

Defined in GHC.Unicode

Ix IOMode #

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.IOMode

Ix DecidedStrictness #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Ix SourceStrictness #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Ix SourceUnpackedness #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Ix Associativity #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Ix SeekMode #

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Device

Ix Void #

Since: base-4.8.0.0

Instance details

Defined in Data.Void

Methods

range :: (Void, Void) -> [Void] #

index :: (Void, Void) -> Void -> Int #

unsafeIndex :: (Void, Void) -> Void -> Int #

inRange :: (Void, Void) -> Void -> Bool #

rangeSize :: (Void, Void) -> Int #

unsafeRangeSize :: (Void, Void) -> Int #

Ix a => Ix (Identity a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

(Ix a, Ix b) => Ix (a, b) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: ((a, b), (a, b)) -> [(a, b)] #

index :: ((a, b), (a, b)) -> (a, b) -> Int #

unsafeIndex :: ((a, b), (a, b)) -> (a, b) -> Int #

inRange :: ((a, b), (a, b)) -> (a, b) -> Bool #

rangeSize :: ((a, b), (a, b)) -> Int #

unsafeRangeSize :: ((a, b), (a, b)) -> Int #

Ix (Proxy s) #

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

range :: (Proxy s, Proxy s) -> [Proxy s] #

index :: (Proxy s, Proxy s) -> Proxy s -> Int #

unsafeIndex :: (Proxy s, Proxy s) -> Proxy s -> Int #

inRange :: (Proxy s, Proxy s) -> Proxy s -> Bool #

rangeSize :: (Proxy s, Proxy s) -> Int #

unsafeRangeSize :: (Proxy s, Proxy s) -> Int #

(Ix a1, Ix a2, Ix a3) => Ix (a1, a2, a3) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: ((a1, a2, a3), (a1, a2, a3)) -> [(a1, a2, a3)] #

index :: ((a1, a2, a3), (a1, a2, a3)) -> (a1, a2, a3) -> Int #

unsafeIndex :: ((a1, a2, a3), (a1, a2, a3)) -> (a1, a2, a3) -> Int #

inRange :: ((a1, a2, a3), (a1, a2, a3)) -> (a1, a2, a3) -> Bool #

rangeSize :: ((a1, a2, a3), (a1, a2, a3)) -> Int #

unsafeRangeSize :: ((a1, a2, a3), (a1, a2, a3)) -> Int #

Ix a => Ix (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

range :: (Const a b, Const a b) -> [Const a b] #

index :: (Const a b, Const a b) -> Const a b -> Int #

unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int #

inRange :: (Const a b, Const a b) -> Const a b -> Bool #

rangeSize :: (Const a b, Const a b) -> Int #

unsafeRangeSize :: (Const a b, Const a b) -> Int #

(Ix a1, Ix a2, Ix a3, Ix a4) => Ix (a1, a2, a3, a4) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> [(a1, a2, a3, a4)] #

index :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> (a1, a2, a3, a4) -> Int #

unsafeIndex :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> (a1, a2, a3, a4) -> Int #

inRange :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> (a1, a2, a3, a4) -> Bool #

rangeSize :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> Int #

unsafeRangeSize :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> Int #

(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5) => Ix (a1, a2, a3, a4, a5) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> [(a1, a2, a3, a4, a5)] #

index :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> (a1, a2, a3, a4, a5) -> Int #

unsafeIndex :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> (a1, a2, a3, a4, a5) -> Int #

inRange :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> (a1, a2, a3, a4, a5) -> Bool #

rangeSize :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> Int #

unsafeRangeSize :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> Int #

data Array i e #

The type of immutable non-strict (boxed) arrays with indices in i and elements in e.

Constructors

Array !i !i !Int (Array# e) 

Instances

Instances details
Functor (Array i) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

fmap :: (a -> b) -> Array i a -> Array i b #

(<$) :: a -> Array i b -> Array i a #

Foldable (Array i) #

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Array i m -> m #

foldMap :: Monoid m => (a -> m) -> Array i a -> m #

foldMap' :: Monoid m => (a -> m) -> Array i a -> m #

foldr :: (a -> b -> b) -> b -> Array i a -> b #

foldr' :: (a -> b -> b) -> b -> Array i a -> b #

foldl :: (b -> a -> b) -> b -> Array i a -> b #

foldl' :: (b -> a -> b) -> b -> Array i a -> b #

foldr1 :: (a -> a -> a) -> Array i a -> a #

foldl1 :: (a -> a -> a) -> Array i a -> a #

toList :: Array i a -> [a] #

null :: Array i a -> Bool #

length :: Array i a -> Int #

elem :: Eq a => a -> Array i a -> Bool #

maximum :: Ord a => Array i a -> a #

minimum :: Ord a => Array i a -> a #

sum :: Num a => Array i a -> a #

product :: Num a => Array i a -> a #

Ix i => Traversable (Array i) #

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Array i a -> f (Array i b) #

sequenceA :: Applicative f => Array i (f a) -> f (Array i a) #

mapM :: Monad m => (a -> m b) -> Array i a -> m (Array i b) #

sequence :: Monad m => Array i (m a) -> m (Array i a) #

(Ix i, Eq e) => Eq (Array i e) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

(==) :: Array i e -> Array i e -> Bool Source #

(/=) :: Array i e -> Array i e -> Bool Source #

(Data a, Data b, Ix a) => Data (Array a b) #

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) #

toConstr :: Array a b -> Constr #

dataTypeOf :: Array a b -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) #

(Ix i, Ord e) => Ord (Array i e) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

compare :: Array i e -> Array i e -> Ordering Source #

(<) :: Array i e -> Array i e -> Bool Source #

(<=) :: Array i e -> Array i e -> Bool Source #

(>) :: Array i e -> Array i e -> Bool Source #

(>=) :: Array i e -> Array i e -> Bool Source #

max :: Array i e -> Array i e -> Array i e Source #

min :: Array i e -> Array i e -> Array i e Source #

(Ix a, Read a, Read b) => Read (Array a b) #

Since: base-2.1

Instance details

Defined in GHC.Read

(Ix a, Show a, Show b) => Show (Array a b) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

showsPrec :: Int -> Array a b -> ShowS #

show :: Array a b -> String #

showList :: [Array a b] -> ShowS #

data STArray s i e #

Mutable, boxed, non-strict arrays in the ST monad. The type arguments are as follows:

  • s: the state variable argument for the ST type
  • i: the index type of the array (should be an instance of Ix)
  • e: the element type of the array.

Constructors

STArray !i !i !Int (MutableArray# s e) 

Instances

Instances details
Eq (STArray s i e) #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

(==) :: STArray s i e -> STArray s i e -> Bool Source #

(/=) :: STArray s i e -> STArray s i e -> Bool Source #

indexError :: Show a => (a, a) -> a -> String -> b #

array #

Arguments

:: Ix i 
=> (i, i)

a pair of bounds, each of the index type of the array. These bounds are the lowest and highest indices in the array, in that order. For example, a one-origin vector of length 10 has bounds (1,10), and a one-origin 10 by 10 matrix has bounds ((1,1),(10,10)).

-> [(i, e)]

a list of associations of the form (index, value). Typically, this list will be expressed as a comprehension. An association (i, x) defines the value of the array at index i to be x.

-> Array i e 

Construct an array with the specified bounds and containing values for given indices within these bounds.

The array is undefined (i.e. bottom) if any index in the list is out of bounds. The Haskell 2010 Report further specifies that if any two associations in the list have the same index, the value at that index is undefined (i.e. bottom). However in GHC's implementation, the value at such an index is the value part of the last association with that index in the list.

Because the indices must be checked for these errors, array is strict in the bounds argument and in the indices of the association list, but non-strict in the values. Thus, recurrences such as the following are possible:

a = array (1,100) ((1,1) : [(i, i * a!(i-1)) | i <- [2..100]])

Not every index within the bounds of the array need appear in the association list, but the values associated with indices that do not appear will be undefined (i.e. bottom).

If, in any dimension, the lower bound is greater than the upper bound, then the array is legal, but empty. Indexing an empty array always gives an array-bounds error, but bounds still yields the bounds with which the array was constructed.

listArray :: Ix i => (i, i) -> [e] -> Array i e #

Construct an array from a pair of bounds and a list of values in index order.

(!) :: Ix i => Array i e -> i -> e infixl 9 #

The value at the given index in an array.

safeRangeSize :: Ix i => (i, i) -> Int #

safeIndex :: Ix i => (i, i) -> Int -> i -> Int #

bounds :: Array i e -> (i, i) #

The bounds with which an array was constructed.

numElements :: Array i e -> Int #

The number of elements in the array.

indices :: Ix i => Array i e -> [i] #

The list of indices of an array in ascending order.

elems :: Array i e -> [e] #

The list of elements of an array in index order.

assocs :: Ix i => Array i e -> [(i, e)] #

The list of associations of an array in index order.

accumArray #

Arguments

:: Ix i 
=> (e -> a -> e)

accumulating function

-> e

initial value

-> (i, i)

bounds of the array

-> [(i, a)]

association list

-> Array i e 

The accumArray function deals with repeated indices in the association list using an accumulating function which combines the values of associations with the same index.

For example, given a list of values of some index type, hist produces a histogram of the number of occurrences of each index within a specified range:

hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
hist bnds is = accumArray (+) 0 bnds [(i, 1) | i<-is, inRange bnds i]

accumArray is strict in each result of applying the accumulating function, although it is lazy in the initial value. Thus, unlike arrays built with array, accumulated arrays should not in general be recursive.

adjust :: (e -> a -> e) -> MutableArray# s e -> (Int, a) -> STRep s b -> STRep s b #

(//) :: Ix i => Array i e -> [(i, e)] -> Array i e infixl 9 #

Constructs an array identical to the first argument except that it has been updated by the associations in the right argument. For example, if m is a 1-origin, n by n matrix, then

m//[((i,i), 0) | i <- [1..n]]

is the same matrix, except with the diagonal zeroed.

Repeated indices in the association list are handled as for array: Haskell 2010 specifies that the resulting array is undefined (i.e. bottom), but GHC's implementation uses the last association for each index.

accum :: Ix i => (e -> a -> e) -> Array i e -> [(i, a)] -> Array i e #

accum f takes an array and an association list and accumulates pairs from the list into the array with the accumulating function f. Thus accumArray can be defined using accum:

accumArray f z b = accum f (array b [(i, z) | i <- range b])

accum is strict in all the results of applying the accumulation. However, it is lazy in the initial values of the array.

amap :: (a -> b) -> Array i a -> Array i b #

ixmap :: (Ix i, Ix j) => (i, i) -> (i -> j) -> Array j e -> Array i e #

ixmap allows for transformations on array indices. It may be thought of as providing function composition on the right with the mapping that the original array embodies.

A similar transformation of array values may be achieved using fmap from the Array instance of the Functor class.

eqArray :: (Ix i, Eq e) => Array i e -> Array i e -> Bool #

cmpArray :: (Ix i, Ord e) => Array i e -> Array i e -> Ordering #

newSTArray :: Ix i => (i, i) -> e -> ST s (STArray s i e) #

boundsSTArray :: STArray s i e -> (i, i) #

readSTArray :: Ix i => STArray s i e -> i -> ST s e #

writeSTArray :: Ix i => STArray s i e -> i -> e -> ST s () #

freezeSTArray :: STArray s i e -> ST s (Array i e) #

thawSTArray :: Array i e -> ST s (STArray s i e) #

foldlElems :: (b -> a -> b) -> b -> Array i a -> b #

A left fold over the elements

foldlElems' :: (b -> a -> b) -> b -> Array i a -> b #

A strict left fold over the elements

foldl1Elems :: (a -> a -> a) -> Array i a -> a #

A left fold over the elements with no starting value

foldrElems :: (a -> b -> b) -> b -> Array i a -> b #

A right fold over the elements

foldrElems' :: (a -> b -> b) -> b -> Array i a -> b #

A strict right fold over the elements

foldr1Elems :: (a -> a -> a) -> Array i a -> a #

A right fold over the elements with no starting value

Unsafe operations

fill :: MutableArray# s e -> (Int, e) -> STRep s a -> STRep s a #

done :: i -> i -> Int -> MutableArray# s e -> STRep s (Array i e) #

unsafeArray :: Ix i => (i, i) -> [(Int, e)] -> Array i e #

unsafeArray' :: (i, i) -> Int -> [(Int, e)] -> Array i e #

lessSafeIndex :: Ix i => (i, i) -> Int -> i -> Int #

unsafeAt :: Array i e -> Int -> e #

unsafeReplace :: Array i e -> [(Int, e)] -> Array i e #

unsafeAccumArray :: Ix i => (e -> a -> e) -> e -> (i, i) -> [(Int, a)] -> Array i e #

unsafeAccumArray' :: (e -> a -> e) -> e -> (i, i) -> Int -> [(Int, a)] -> Array i e #

unsafeAccum :: (e -> a -> e) -> Array i e -> [(Int, a)] -> Array i e #

unsafeReadSTArray :: STArray s i e -> Int -> ST s e #

unsafeWriteSTArray :: STArray s i e -> Int -> e -> ST s () #

unsafeFreezeSTArray :: STArray s i e -> ST s (Array i e) #

unsafeThawSTArray :: Array i e -> ST s (STArray s i e) #