Copyright | (c) 2011 Patrick Bahr |
---|---|
License | BSD3 |
Maintainer | Patrick Bahr <paba@diku.dk> |
Stability | experimental |
Portability | non-portable (GHC Extensions) |
Safe Haskell | None |
Language | Haskell98 |
This module defines the notion of algebras and catamorphisms, and their generalizations to e.g. monadic versions and other (co)recursion schemes. All definitions are generalised versions of those in Data.Comp.Algebra.
Synopsis
- type Alg f e = f e :-> e
- free :: forall f h a b. HFunctor f => Alg f b -> (a :-> b) -> Cxt h f a :-> b
- cata :: forall f a. HFunctor f => Alg f a -> HFix f :-> a
- cata' :: HFunctor f => Alg f e -> Cxt h f e :-> e
- appCxt :: HFunctor f => Context f (Cxt h f a) :-> Cxt h f a
- type AlgM m f e = NatM m (f e) e
- freeM :: forall f m h a b. (HTraversable f, Monad m) => AlgM m f b -> NatM m a b -> NatM m (Cxt h f a) b
- cataM :: forall f m a. (HTraversable f, Monad m) => AlgM m f a -> NatM m (HFix f) a
- cataM' :: forall m h a f. (Monad m, HTraversable f) => AlgM m f a -> NatM m (Cxt h f a) a
- liftMAlg :: forall m f. (Monad m, HTraversable f) => Alg f I -> Alg f m
- type CxtFun f g = forall h. SigFun (Cxt h f) (Cxt h g)
- type SigFun f g = forall (a :: * -> *). f a :-> g a
- type Hom f g = SigFun f (Context g)
- appHom :: forall f g. (HFunctor f, HFunctor g) => Hom f g -> CxtFun f g
- appHom' :: forall f g. HFunctor g => Hom f g -> CxtFun f g
- compHom :: (HFunctor g, HFunctor h) => Hom g h -> Hom f g -> Hom f h
- appSigFun :: forall f g. HFunctor f => SigFun f g -> CxtFun f g
- appSigFun' :: forall f g. HFunctor g => SigFun f g -> CxtFun f g
- compSigFun :: SigFun g h -> SigFun f g -> SigFun f h
- hom :: HFunctor g => SigFun f g -> Hom f g
- compAlg :: HFunctor g => Alg g a -> Hom f g -> Alg f a
- type CxtFunM m f g = forall h. SigFunM m (Cxt h f) (Cxt h g)
- type SigFunM m f g = forall (a :: * -> *). NatM m (f a) (g a)
- type HomM m f g = SigFunM m f (Context g)
- sigFunM :: Monad m => SigFun f g -> SigFunM m f g
- hom' :: (HFunctor f, HFunctor g, Monad m) => SigFunM m f g -> HomM m f g
- appHomM :: forall f g m. (HTraversable f, HFunctor g, Monad m) => HomM m f g -> CxtFunM m f g
- appHomM' :: forall f g m. (HTraversable g, Monad m) => HomM m f g -> CxtFunM m f g
- homM :: (HFunctor g, Monad m) => SigFun f g -> HomM m f g
- appSigFunM :: forall f g m. (HTraversable f, Monad m) => SigFunM m f g -> CxtFunM m f g
- appSigFunM' :: forall f g m. (HTraversable g, Monad m) => SigFunM m f g -> CxtFunM m f g
- compHomM :: (HTraversable g, HFunctor h, Monad m) => HomM m g h -> HomM m f g -> HomM m f h
- compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f h
- compAlgM :: (HTraversable g, Monad m) => AlgM m g a -> HomM m f g -> AlgM m f a
- compAlgM' :: (HTraversable g, Monad m) => AlgM m g a -> Hom f g -> AlgM m f a
- type Coalg f a = a :-> f a
- ana :: forall f a. HFunctor f => Coalg f a -> a :-> HFix f
- type CoalgM m f a = NatM m a (f a)
- anaM :: forall a m f. (HTraversable f, Monad m) => CoalgM m f a -> NatM m a (HFix f)
- type RAlg f a = f (HFix f :*: a) :-> a
- para :: forall f a. HFunctor f => RAlg f a -> HFix f :-> a
- type RAlgM m f a = NatM m (f (HFix f :*: a)) a
- paraM :: forall f m a. (HTraversable f, Monad m) => RAlgM m f a -> NatM m (HFix f) a
- type RCoalg f a = a :-> f (HFix f :+: a)
- apo :: forall f a. HFunctor f => RCoalg f a -> a :-> HFix f
- type RCoalgM m f a = NatM m a (f (HFix f :+: a))
- apoM :: forall f m a. (HTraversable f, Monad m) => RCoalgM m f a -> NatM m a (HFix f)
- type CVCoalg f a = a :-> f (Context f a)
- futu :: forall f a. HFunctor f => CVCoalg f a -> a :-> HFix f
- type CVCoalgM m f a = NatM m a (f (Context f a))
- futuM :: forall f a m. (HTraversable f, Monad m) => CVCoalgM m f a -> NatM m a (HFix f)
Algebras & Catamorphisms
type Alg f e = f e :-> e Source #
This type represents multisorted f
-algebras with a family e
of carriers.
free :: forall f h a b. HFunctor f => Alg f b -> (a :-> b) -> Cxt h f a :-> b Source #
Construct a catamorphism for contexts over f
with holes of type
b
, from the given algebra.
cata :: forall f a. HFunctor f => Alg f a -> HFix f :-> a Source #
Construct a catamorphism from the given algebra.
cata' :: HFunctor f => Alg f e -> Cxt h f e :-> e Source #
A generalisation of cata
from terms over f
to contexts over
f
, where the holes have the type of the algebra carrier.
appCxt :: HFunctor f => Context f (Cxt h f a) :-> Cxt h f a Source #
This function applies a whole context into another context.
Monadic Algebras & Catamorphisms
type AlgM m f e = NatM m (f e) e Source #
This type represents a monadic algebra. It is similar to Alg
but the return type is monadic.
freeM :: forall f m h a b. (HTraversable f, Monad m) => AlgM m f b -> NatM m a b -> NatM m (Cxt h f a) b Source #
Construct a monadic catamorphism for contexts over f
with holes
of type b
, from the given monadic algebra.
cataM :: forall f m a. (HTraversable f, Monad m) => AlgM m f a -> NatM m (HFix f) a Source #
This is a monadic version of cata
.
liftMAlg :: forall m f. (Monad m, HTraversable f) => Alg f I -> Alg f m Source #
This function lifts a many-sorted algebra to a monadic domain.
Term Homomorphisms
type CxtFun f g = forall h. SigFun (Cxt h f) (Cxt h g) Source #
This type represents context function.
type SigFun f g = forall (a :: * -> *). f a :-> g a Source #
This type represents uniform signature function specification.
appHom :: forall f g. (HFunctor f, HFunctor g) => Hom f g -> CxtFun f g Source #
This function applies the given term homomorphism to a term/context.
appHom' :: forall f g. HFunctor g => Hom f g -> CxtFun f g Source #
This function applies the given term homomorphism to a
term/context. This is the top-down variant of appHom
.
compHom :: (HFunctor g, HFunctor h) => Hom g h -> Hom f g -> Hom f h Source #
This function composes two term algebras.
appSigFun :: forall f g. HFunctor f => SigFun f g -> CxtFun f g Source #
This function applies a signature function to the given context.
appSigFun' :: forall f g. HFunctor g => SigFun f g -> CxtFun f g Source #
This function applies a signature function to the given
context. This is the top-down variant of appSigFun
.
compSigFun :: SigFun g h -> SigFun f g -> SigFun f h Source #
This function composes two signature functions.
hom :: HFunctor g => SigFun f g -> Hom f g Source #
Lifts the given signature function to the canonical term homomorphism.
compAlg :: HFunctor g => Alg g a -> Hom f g -> Alg f a Source #
This function composes a term algebra with an algebra.
Monadic Term Homomorphisms
type CxtFunM m f g = forall h. SigFunM m (Cxt h f) (Cxt h g) Source #
This type represents monadic context function.
type SigFunM m f g = forall (a :: * -> *). NatM m (f a) (g a) Source #
This type represents monadic signature functions.
sigFunM :: Monad m => SigFun f g -> SigFunM m f g Source #
This function lifts the given signature function to a monadic signature function. Note that term algebras are instances of signature functions. Hence this function also applies to term algebras.
hom' :: (HFunctor f, HFunctor g, Monad m) => SigFunM m f g -> HomM m f g Source #
This function lifts the give monadic signature function to a monadic term algebra.
appHomM :: forall f g m. (HTraversable f, HFunctor g, Monad m) => HomM m f g -> CxtFunM m f g Source #
This function applies the given monadic term homomorphism to the given term/context.
appHomM' :: forall f g m. (HTraversable g, Monad m) => HomM m f g -> CxtFunM m f g Source #
This function applies the given monadic term homomorphism to the
given term/context. This is a top-down variant of appHomM
.
homM :: (HFunctor g, Monad m) => SigFun f g -> HomM m f g Source #
This function lifts the given signature function to a monadic term algebra.
appSigFunM :: forall f g m. (HTraversable f, Monad m) => SigFunM m f g -> CxtFunM m f g Source #
This function applies the given monadic signature function to the given context.
appSigFunM' :: forall f g m. (HTraversable g, Monad m) => SigFunM m f g -> CxtFunM m f g Source #
This function applies the given monadic signature function to the
given context. This is a top-down variant of appSigFunM
.
compHomM :: (HTraversable g, HFunctor h, Monad m) => HomM m g h -> HomM m f g -> HomM m f h Source #
This function composes two monadic term algebras.
compSigFunM :: Monad m => SigFunM m g h -> SigFunM m f g -> SigFunM m f h Source #
This function composes two monadic signature functions.
compAlgM :: (HTraversable g, Monad m) => AlgM m g a -> HomM m f g -> AlgM m f a Source #
This function composes a monadic term algebra with a monadic algebra
compAlgM' :: (HTraversable g, Monad m) => AlgM m g a -> Hom f g -> AlgM m f a Source #
This function composes a monadic term algebra with a monadic algebra.
Coalgebras & Anamorphisms
ana :: forall f a. HFunctor f => Coalg f a -> a :-> HFix f Source #
This function unfolds the given value to a term using the given
unravelling function. This is the unique homomorphism a -> Term f
from the given coalgebra of type a -> f a
to the final coalgebra
Term f
.
anaM :: forall a m f. (HTraversable f, Monad m) => CoalgM m f a -> NatM m a (HFix f) Source #
This function unfolds the given value to a term using the given
monadic unravelling function. This is the unique homomorphism a ->
Term f
from the given coalgebra of type a -> f a
to the final
coalgebra Term f
.
R-Algebras & Paramorphisms
type RAlg f a = f (HFix f :*: a) :-> a Source #
This type represents r-algebras over functor f
and with domain
a
.
para :: forall f a. HFunctor f => RAlg f a -> HFix f :-> a Source #
This function constructs a paramorphism from the given r-algebra
type RAlgM m f a = NatM m (f (HFix f :*: a)) a Source #
This type represents monadic r-algebras over monad m
and
functor f
and with domain a
.
paraM :: forall f m a. (HTraversable f, Monad m) => RAlgM m f a -> NatM m (HFix f) a Source #
This function constructs a monadic paramorphism from the given monadic r-algebra
R-Coalgebras & Apomorphisms
type RCoalg f a = a :-> f (HFix f :+: a) Source #
This type represents r-coalgebras over functor f
and with
domain a
.
apo :: forall f a. HFunctor f => RCoalg f a -> a :-> HFix f Source #
This function constructs an apomorphism from the given r-coalgebra.
type RCoalgM m f a = NatM m a (f (HFix f :+: a)) Source #
This type represents monadic r-coalgebras over monad m
and
functor f
with domain a
.
apoM :: forall f m a. (HTraversable f, Monad m) => RCoalgM m f a -> NatM m a (HFix f) Source #
This function constructs a monadic apomorphism from the given monadic r-coalgebra.
CV-Coalgebras & Futumorphisms
type CVCoalg f a = a :-> f (Context f a) Source #
This type represents cv-coalgebras over functor f
and with domain
a
.
futu :: forall f a. HFunctor f => CVCoalg f a -> a :-> HFix f Source #
This function constructs the unique futumorphism from the given cv-coalgebra to the term algebra.