-------------------------------------------------------------------------------- -- | -- Module : Data.Comp.Multi -- Copyright : Originals (c) 2011 Patrick Bahr; modifications (c) 2017 Jmase koppel -- License : BSD3 -- -- This module defines the infrastructure necessary to use -- /Generalised Compositional Data Types/. Generalised Compositional Data Types -- is an extension of Compositional Data Types with mutually recursive -- data types, and more generally GADTs. Examples of usage are bundled with the -- package in the library @examples\/Examples\/Multi@. -- -- This is a fork of Patrick Bahrs @compdata@ package. The chief differences -- are that the representation of sums has been replaced with a version that uses constant memory, -- and the portions of the library for single-sorted terms have been removed to speed compilation times. -- There are several minor changes and additions to the utility functions of this library. -- -------------------------------------------------------------------------------- module Data.Comp.Multi ( module Data.Comp.Multi.Algebra , module Data.Comp.Multi.Annotation , module Data.Comp.Multi.Equality , module Data.Comp.Multi.Generic , module Data.Comp.Multi.HFoldable , module Data.Comp.Multi.HFunctor , module Data.Comp.Multi.HTraversable , module Data.Comp.Multi.Ops , module Data.Comp.Multi.Ordering , module Data.Comp.Multi.Show , module Data.Comp.Multi.Sum , module Data.Comp.Multi.Term , module Data.Comp.Dict ) where import Data.Comp.Multi.Algebra import Data.Comp.Multi.Annotation import Data.Comp.Multi.Equality import Data.Comp.Multi.Generic import Data.Comp.Multi.HFoldable import Data.Comp.Multi.HFunctor import Data.Comp.Multi.HTraversable import Data.Comp.Multi.Ops import Data.Comp.Multi.Ordering import Data.Comp.Multi.Show import Data.Comp.Multi.Sum import Data.Comp.Multi.Term import Data.Comp.Dict {- $ex1 The example illustrates how to use generalised compositional data types to implement a small expression language, with a sub language of values, and an evaluation function mapping expressions to values. The following language extensions are needed in order to run the example: @TemplateHaskell@, @TypeOperators@, @MultiParamTypeClasses@, @FlexibleInstances@, @FlexibleContexts@, and @UndecidableInstances@, @GADTs@. Besides, GCH 7 is required. > import Data.Comp.Multi > import Data.Comp.Multi.Show () > import Data.Comp.Multi.Derive > > -- Signature for values and operators > data Value e l where > Const :: Int -> Value e Int > Pair :: e s -> e t -> Value e (s,t) > data Op e l where > Add, Mult :: e Int -> e Int -> Op e Int > Fst :: e (s,t) -> Op e s > Snd :: e (s,t) -> Op e t > > -- Signature for the simple expression language > type Sig = Op :+: Value > > -- Derive boilerplate code using Template Haskell (GHC 7 needed) > $(derive [makeHFunctor, makeHShowF, makeHEqF, smartConstructors] > [''Value, ''Op]) > > -- Term evaluation algebra > class Eval f v where > evalAlg :: Alg f (Term v) > > instance (Eval f v, Eval g v) => Eval (f :+: g) v where > evalAlg (Inl x) = evalAlg x > evalAlg (Inr x) = evalAlg x > > -- Lift the evaluation algebra to a catamorphism > eval :: (HFunctor f, Eval f v) => Term f :-> Term v > eval = cata evalAlg > > instance (Value :<: v) => Eval Value v where > evalAlg = inject > > instance (Value :<: v) => Eval Op v where > evalAlg (Add x y) = iConst $ (projC x) + (projC y) > evalAlg (Mult x y) = iConst $ (projC x) * (projC y) > evalAlg (Fst x) = fst $ projP x > evalAlg (Snd x) = snd $ projP x > > projC :: (Value :<: v) => Term v Int -> Int > projC v = case project v of Just (Const n) -> n > > projP :: (Value :<: v) => Term v (s,t) -> (Term v s, Term v t) > projP v = case project v of Just (Pair x y) -> (x,y) > > -- Example: evalEx = iConst 2 > evalEx :: Term Value Int > evalEx = eval (iFst $ iPair (iConst 2) (iConst 1) :: Term Sig Int) -} {- $ex2 The example illustrates how to use generalised compositional data types to implement a small expression language, with a sub language of values, and a monadic evaluation function mapping expressions to values. The following language extensions are needed in order to run the example: @TemplateHaskell@, @TypeOperators@, @MultiParamTypeClasses@, @FlexibleInstances@, @FlexibleContexts@, and @UndecidableInstances@, @GADTs@. Besides, GCH 7 is required. > import Data.Comp.Multi > import Data.Comp.Multi.Show () > import Data.Comp.Multi.Derive > import Control.Monad (liftM) > > -- Signature for values and operators > data Value e l where > Const :: Int -> Value e Int > Pair :: e s -> e t -> Value e (s,t) > data Op e l where > Add, Mult :: e Int -> e Int -> Op e Int > Fst :: e (s,t) -> Op e s > Snd :: e (s,t) -> Op e t > > -- Signature for the simple expression language > type Sig = Op :+: Value > > -- Derive boilerplate code using Template Haskell (GHC 7 needed) > $(derive [makeHFunctor, makeHTraversable, makeHFoldable, > makeHEqF, makeHShowF, smartConstructors] > [''Value, ''Op]) > > -- Monadic term evaluation algebra > class EvalM f v where > evalAlgM :: AlgM Maybe f (Term v) > > instance (EvalM f v, EvalM g v) => EvalM (f :+: g) v where > evalAlgM (Inl x) = evalAlgM x > evalAlgM (Inr x) = evalAlgM x > > evalM :: (HTraversable f, EvalM f v) => Term f l -> Maybe (Term v l) > evalM = cataM evalAlgM > > instance (Value :<: v) => EvalM Value v where > evalAlgM = return . inject > > instance (Value :<: v) => EvalM Op v where > evalAlgM (Add x y) = do n1 <- projC x > n2 <- projC y > return $ iConst $ n1 + n2 > evalAlgM (Mult x y) = do n1 <- projC x > n2 <- projC y > return $ iConst $ n1 * n2 > evalAlgM (Fst v) = liftM fst $ projP v > evalAlgM (Snd v) = liftM snd $ projP v > > projC :: (Value :<: v) => Term v Int -> Maybe Int > projC v = case project v of > Just (Const n) -> return n; _ -> Nothing > > projP :: (Value :<: v) => Term v (a,b) -> Maybe (Term v a, Term v b) > projP v = case project v of > Just (Pair x y) -> return (x,y); _ -> Nothing > > -- Example: evalMEx = Just (iConst 5) > evalMEx :: Maybe (Term Value Int) > evalMEx = evalM ((iConst 1) `iAdd` > (iConst 2 `iMult` iConst 2) :: Term Sig Int) -} {- $ex3 The example illustrates how to use generalised compositional data types to implement a small expression language, and an evaluation function mapping intrinsically typed expressions to values. The following language extensions are needed in order to run the example: @TemplateHaskell@, @TypeOperators@, @MultiParamTypeClasses@, @FlexibleInstances@, @FlexibleContexts@, and @UndecidableInstances@, @GADTs@. Besides, GCH 7 is required. > import Data.Comp.Multi > import Data.Comp.Multi.Show () > import Data.Comp.Multi.Derive > > -- Signature for values and operators > data Value e l where > Const :: Int -> Value e Int > Pair :: e s -> e t -> Value e (s,t) > data Op e l where > Add, Mult :: e Int -> e Int -> Op e Int > Fst :: e (s,t) -> Op e s > Snd :: e (s,t) -> Op e t > > -- Signature for the simple expression language > type Sig = Op :+: Value > > -- Derive boilerplate code using Template Haskell (GHC 7 needed) > $(derive [makeHFunctor, makeHShowF, makeHEqF, smartConstructors] > [''Value, ''Op]) > > -- Term evaluation algebra > class EvalI f where > evalAlgI :: Alg f I > > instance (EvalI f, EvalI g) => EvalI (f :+: g) where > evalAlgI (Inl x) = evalAlgI x > evalAlgI (Inr x) = evalAlgI x > > -- Lift the evaluation algebra to a catamorphism > evalI :: (HFunctor f, EvalI f) => Term f i -> i > evalI = unI . cata evalAlgI > > instance EvalI Value where > evalAlgI (Const n) = I n > evalAlgI (Pair (I x) (I y)) = I (x,y) > > instance EvalI Op where > evalAlgI (Add (I x) (I y)) = I (x + y) > evalAlgI (Mult (I x) (I y)) = I (x * y) > evalAlgI (Fst (I (x,_))) = I x > evalAlgI (Snd (I (_,y))) = I y > > -- Example: evalEx = 2 > evalIEx :: Int > evalIEx = evalI (iFst $ iPair (iConst 2) (iConst 1) :: Term Sig Int) -} {- $ex4 The example illustrates how to compose a term homomorphism and an algebra, exemplified via a desugaring term homomorphism and an evaluation algebra. The following language extensions are needed in order to run the example: @TemplateHaskell@, @TypeOperators@, @MultiParamTypeClasses@, @FlexibleInstances@, @FlexibleContexts@, and @UndecidableInstances@, @GADTs@. Besides, GCH 7 is required. > import Data.Comp.Multi > import Data.Comp.Multi.Show () > import Data.Comp.Multi.Derive > > -- Signature for values, operators, and syntactic sugar > data Value e l where > Const :: Int -> Value e Int > Pair :: e s -> e t -> Value e (s,t) > data Op e l where > Add, Mult :: e Int -> e Int -> Op e Int > Fst :: e (s,t) -> Op e s > Snd :: e (s,t) -> Op e t > data Sugar e l where > Neg :: e Int -> Sugar e Int > Swap :: e (s,t) -> Sugar e (t,s) > > -- Source position information (line number, column number) > data Pos = Pos Int Int > deriving Show > > -- Signature for the simple expression language > type Sig = Op :+: Value > type SigP = Op :&: Pos :+: Value :&: Pos > > -- Signature for the simple expression language, extended with syntactic sugar > type Sig' = Sugar :+: Op :+: Value > type SigP' = Sugar :&: Pos :+: Op :&: Pos :+: Value :&: Pos > > -- Derive boilerplate code using Template Haskell (GHC 7 needed) > $(derive [makeHFunctor, makeHTraversable, makeHFoldable, > makeHEqF, makeHShowF, smartConstructors] > [''Value, ''Op, ''Sugar]) > > -- Term homomorphism for desugaring of terms > class (HFunctor f, HFunctor g) => Desugar f g where > desugHom :: Hom f g > desugHom = desugHom' . hfmap Hole > desugHom' :: Alg f (Context g a) > desugHom' x = appCxt (desugHom x) > > instance (Desugar f h, Desugar g h) => Desugar (f :+: g) h where > desugHom (Inl x) = desugHom x > desugHom (Inr x) = desugHom x > desugHom' (Inl x) = desugHom' x > desugHom' (Inr x) = desugHom' x > > instance (Value :<: v, HFunctor v) => Desugar Value v where > desugHom = simpCxt . inj > > instance (Op :<: v, HFunctor v) => Desugar Op v where > desugHom = simpCxt . inj > > instance (Op :<: v, Value :<: v, HFunctor v) => Desugar Sugar v where > desugHom' (Neg x) = iConst (-1) `iMult` x > desugHom' (Swap x) = iSnd x `iPair` iFst x > > -- Term evaluation algebra > class Eval f v where > evalAlg :: Alg f (Term v) > > instance (Eval f v, Eval g v) => Eval (f :+: g) v where > evalAlg (Inl x) = evalAlg x > evalAlg (Inr x) = evalAlg x > > instance (Value :<: v) => Eval Value v where > evalAlg = inject > > instance (Value :<: v) => Eval Op v where > evalAlg (Add x y) = iConst $ (projC x) + (projC y) > evalAlg (Mult x y) = iConst $ (projC x) * (projC y) > evalAlg (Fst x) = fst $ projP x > evalAlg (Snd x) = snd $ projP x > > projC :: (Value :<: v) => Term v Int -> Int > projC v = case project v of Just (Const n) -> n > > projP :: (Value :<: v) => Term v (s,t) -> (Term v s, Term v t) > projP v = case project v of Just (Pair x y) -> (x,y) > > -- Compose the evaluation algebra and the desugaring homomorphism to an > -- algebra > eval :: Term Sig' :-> Term Value > eval = cata (evalAlg `compAlg` (desugHom :: Hom Sig' Sig)) > > -- Example: evalEx = iPair (iConst 2) (iConst 1) > evalEx :: Term Value (Int,Int) > evalEx = eval $ iSwap $ iPair (iConst 1) (iConst 2) -} {- $ex5 The example illustrates how to lift a term homomorphism to annotations, exemplified via a desugaring term homomorphism lifted to terms annotated with source position information. The following language extensions are needed in order to run the example: @TemplateHaskell@, @TypeOperators@, @MultiParamTypeClasses@, @FlexibleInstances@, @FlexibleContexts@, and @UndecidableInstances@, @GADTs@. Besides, GCH 7 is required. > import Data.Comp.Multi > import Data.Comp.Multi.Show () > import Data.Comp.Multi.Derive > > -- Signature for values, operators, and syntactic sugar > data Value e l where > Const :: Int -> Value e Int > Pair :: e s -> e t -> Value e (s,t) > data Op e l where > Add, Mult :: e Int -> e Int -> Op e Int > Fst :: e (s,t) -> Op e s > Snd :: e (s,t) -> Op e t > data Sugar e l where > Neg :: e Int -> Sugar e Int > Swap :: e (s,t) -> Sugar e (t,s) > > -- Source position information (line number, column number) > data Pos = Pos Int Int > deriving (Show, Eq) > > -- Signature for the simple expression language > type Sig = Op :+: Value > type SigP = Op :&: Pos :+: Value :&: Pos > > -- Signature for the simple expression language, extended with syntactic sugar > type Sig' = Sugar :+: Op :+: Value > type SigP' = Sugar :&: Pos :+: Op :&: Pos :+: Value :&: Pos > > -- Derive boilerplate code using Template Haskell (GHC 7 needed) > $(derive [makeHFunctor, makeHTraversable, makeHFoldable, > makeHEqF, makeHShowF, smartConstructors] > [''Value, ''Op, ''Sugar]) > > -- Term homomorphism for desugaring of terms > class (HFunctor f, HFunctor g) => Desugar f g where > desugHom :: Hom f g > desugHom = desugHom' . hfmap Hole > desugHom' :: Alg f (Context g a) > desugHom' x = appCxt (desugHom x) > > instance (Desugar f h, Desugar g h) => Desugar (f :+: g) h where > desugHom (Inl x) = desugHom x > desugHom (Inr x) = desugHom x > desugHom' (Inl x) = desugHom' x > desugHom' (Inr x) = desugHom' x > > instance (Value :<: v, HFunctor v) => Desugar Value v where > desugHom = simpCxt . inj > > instance (Op :<: v, HFunctor v) => Desugar Op v where > desugHom = simpCxt . inj > > instance (Op :<: v, Value :<: v, HFunctor v) => Desugar Sugar v where > desugHom' (Neg x) = iConst (-1) `iMult` x > desugHom' (Swap x) = iSnd x `iPair` iFst x > > -- Lift the desugaring term homomorphism to a catamorphism > desug :: Term Sig' :-> Term Sig > desug = appHom desugHom > > -- Example: desugEx = iPair (iConst 2) (iConst 1) > desugEx :: Term Sig (Int,Int) > desugEx = desug $ iSwap $ iPair (iConst 1) (iConst 2) > > -- Lift desugaring to terms annotated with source positions > desugP :: Term SigP' :-> Term SigP > desugP = appHom (propAnn desugHom) > > iSwapP :: (DistAnn f p f', Sugar :<: f) => p -> Term f' (a,b) -> Term f' (b,a) > iSwapP p x = Term (injectA p $ inj $ Swap x) > > iConstP :: (DistAnn f p f', Value :<: f) => p -> Int -> Term f' Int > iConstP p x = Term (injectA p $ inj $ Const x) > > iPairP :: (DistAnn f p f', Value :<: f) => p -> Term f' a -> Term f' b -> Term f' (a,b) > iPairP p x y = Term (injectA p $ inj $ Pair x y) > > iFstP :: (DistAnn f p f', Op :<: f) => p -> Term f' (a,b) -> Term f' a > iFstP p x = Term (injectA p $ inj $ Fst x) > > iSndP :: (DistAnn f p f', Op :<: f) => p -> Term f' (a,b) -> Term f' b > iSndP p x = Term (injectA p $ inj $ Snd x) > > -- Example: desugPEx = iPairP (Pos 1 0) > -- (iSndP (Pos 1 0) (iPairP (Pos 1 1) > -- (iConstP (Pos 1 2) 1) > -- (iConstP (Pos 1 3) 2))) > -- (iFstP (Pos 1 0) (iPairP (Pos 1 1) > -- (iConstP (Pos 1 2) 1) > -- (iConstP (Pos 1 3) 2))) > desugPEx :: Term SigP (Int,Int) > desugPEx = desugP $ iSwapP (Pos 1 0) (iPairP (Pos 1 1) (iConstP (Pos 1 2) 1) > (iConstP (Pos 1 3) 2)) -}